Biotechnology, Systems & Synthetic Biology 

Program Description
Technological advances, such as complete genome sequencing and high-throughput biochemical analysis of intracellular processes, have revolutionized biological research and are the foundation for innovation in clinical medicine and industry. However, utilizing these data to improve our understanding of the living world and to develop useful applications in biotechnology and medicine remain separate and challenging propositions. This cluster program will prepare the next generation of scientists and engineers to take on these challenges by drawing upon biotechnology, systems biology, and synthetic biology. Northwestern University has a strong history of interdisciplinary and interdepartmental research in the life sciences and engineering, from which these fields have emerged as powerful opportunities for students.

Biotechnology
Biotechnology is a burgeoning area of research worldwide, both industrially and academically, that combines the expertise of multiple disciplines such as engineering, life sciences, and medicine. The emergence of new tools and ideas in biotechnology continues to accelerate, and this cluster program provides an interdisciplinary program with significant exposure to the concepts and experimental approaches in a variety of biotechnology-related research areas. Substantial technical and intellectual skills will be developed in areas such as stem cells, gene therapy, regenerative medicine, microbiology, molecular genetics, biochemical engineering, cell and tissue culture technologies, metabolic engineering, biomaterials, hybridoma technology, and separation technologies.

Systems Biology
With the advent of improved techniques for acquiring large-scale bioinformatic data, systems biology has emerged as a new scientific field dedicated to analyzing these large datasets to gain understanding. Given the special properties of biological systems, this field requires unique quantitative and analytical approaches. For example, biological systems are often characterized by complicated interactions between multiple components, such that the behavior of these complex systems is often not predictable based solely on an understanding of the components that compose the system - this is a property described as emergence. Because these properties are exhibited in many different forms across the biological spectrum, systems biology research stands at the fore of many fronts in biomedical science. Training in systems biology will develop the conceptual understanding, technical skills and tools, and scientific background required to address these challenges and capitalize upon this new realm of biological research.

Synthetic Biology
Synthetic biology seeks to develop the technologies and knowledge necessary to design and construct novel living systems. These efforts serve to both better our understanding of the natural living world and enable us to harness the immense repertoire of biology to meet pressing societal needs, including the sustainable production of biofuels and materials using microorganisms, using engineered cells as programmable therapeutics, and to facilitate environmental stewardship and conservation. Combining methods, principles, and knowledge from disciplines including biology, engineering, mathematics, and computational science, synthetic biology promises to transform both the life sciences and engineering.


Core Courses in Biotechnology, Systems and Synthetic Biology use quantitative analysis and engineering approaches to investigate and manipulate biological systems. To introduce students to the technical expertise and scientific background required to address important challenges in these fields, this cluster includes two required courses and recommends additional courses that can be taken to fulfill course requirements. Additionally, this cluster will include an ongoing series of short courses having the general aims of (a) enabling students from different scientific & technical backgrounds to learn and use a common scientific language, and (b) exposing students to emerging technologies and providing opportunities for training. This overall program will provide students with both opportunities for specialization and with the broader perspective required to tackle pressing and multidisciplinary scientific problems.

Basic recommended courses:

IBiS 410: Quantitative biology
ChBE 478: Advances in Biotechnology
CHEM_ENG 375: Biochemical Engineering
CHEM_ENG 376: Principles in Synthetic Biology
CHEM_ENG 379: Computational Biology: Principles and Applications
CHEM_ENG 373: Global Health and Biotechnology
IBiS 455: Current Topics in Synthetic Biology

Other recommended topics:

Elective courses will be announced and introduced over time, covering topics including computational biology, biochemical and metabolic engineering, and regenerative medicine.

Short Courses (provisional topics):
Introduction to molecular biology (theory and laboratory practice)
Technology-specific topics:
Imaging fundamentals
Characterization of materials
Mass spectrometry and proteomics

Cluster Activities: As part of this cluster, students will participate in activities including seminars and symposia, which provide valuable opportunities for interactions among participating students coming from different departments or programs and contribute to building and growing a community of researchers working on related challenges. Activities include:

Biotechnology Seminar Series - Research seminars on the various aspects of biotechnology is a key graduate training experience, especially in a field as interdisciplinary as biotechnology. A monthly seminar series is an opportunity for both trainees and faculty to learn about emerging opportunities within and outside of Northwestern.

Annual Biotechnology, Systems, and Synthetic Biology Poster Fair:  This event will be held in the Spring Quarter at a venue located at the Chicago campus, at which students and postdocs will have the opportunity to present posters and discuss their research with colleagues. The Fair will promote the formation of new connections among faculty and trainees of the Biotechnology, Systems and Synthetic Biology cluster, while providing an opportunity for informal interactions within this interdisciplinary group.

Cluster Co-directors

  • Michael Jewett, PhD, Associate Professor of Chemical and Biological Engineering
  • Joshua Leonard, PhD, Associate Professor of Chemical and Biological Engineering

Training Faculty          

  • Luis Amaral, Professor, Chemical and Biological Engineering   
  • Guillermo Ameer, Professor, Biomedical Engineering      
  • Erik Andersen, Assistant Professor, Molecular Biosciences 
  • Vadim Backman, Professor, Biomedical Engineering
  • Neda Bagheri, Assistant Professor, Chemical and Biological Engineering
  • Xiaomin Bao, Assistant Professor, Molecular Biosciences
  • Joseph Bass, Professor, Medicine
  • Jason Brickner, Professor, Molecular Biosciences
  • Linda Broadbelt, Associate Dean for Research, Professor, Chemical and Biological Engineering           
  • John Crispino, Professor, Medicine
  • Vinayak Dravid, Professor, Director of NUANCE Center, Materials Science and Engineering
  • William Funk, Assistant Professor, Preventive Medicine
  • Nathan C. Gianneschi, Professor, Chemistry, Materials Science and Engineering, Biomedical Engineering
  • Matt Glucksberg, Professor, Biomedical Engineering
  • Mitra Hartmann, Professor, Biomedical Engineering, Mechanical Engineering
  • Mark Hersam Professor, Materials Science and Engineering
  • Curt Horvath, Professor, Molecular Biosciences
  • Phil Iannaccone, Professor, Pediatrics and Pathology
  • Michael Jewett, Professor, Chemical and Biological Engineering   
  • Derk Joester, Associate Professor, Materials Science and Engineering
  • Neha Kamat, Assistant Professor, Biomedical Engineering
  • William Kath, Professor, Engineering Sciences and Applied Mathematics
  • Neil L. Kelleher, Professor, Molecular Biosciences, Chemistry, and Feinberg School of Medicine
  • Patrick Kiser, Professor, Biomedical Engineering, Obstetrics and Gynecology.
  • William Klein, Professor, Neurobiology
  • Steven Kosak, Assistant Professor, Cell and Molecular Biology
  • Harold Kung, Professor, Chemical and Biological Engineering
  • Carole LaBonne, Professor, Molecular Biosciences
  • Robert Lamb, Professor, Molecular Biosciences
  • Joshua Leonard, Associate Professor, Chemical and Biological Engineering
  • Robert Linsenmeier, Professor, Biomedical Engineering
  • Shu Liu, Professor, Biomedical Engineering
  • Julius Lucks, Associate Professor, Chemical and Biological Engineering
  • John Marko, Professor, Molecular Biosciences, Physics & Astronomy
  • Kelly Mayo, Professor, Molecular Biosciences   
  • Thomas Meade, Professor, Chemistry, Molecular Biosciences, Neurobiology, Radiology
  • William Miller, Professor, Chemical and Biological Engineering
  • Chad Mirkin, Professor, Chemistry, Chemical and Biological Engineering, Biomedical Engineering, Materials Science and Engineering, Medicine
  • Richard Morimoto, Professor, Molecular Biosciences
  • Adilson Motter, Professor, Physics and Astronomy
  • Milan Mrksich, Professor, Biomedical Engineering, Chemistry, Cell and Molecular Biology
  • Wendy Murray, Professor, Biomedical Engineering
  • Sonbinh Nguyen, Professor, Chemistry
  • Teri Odom, Professor, Chemistry
  • Thomas O'Halloran, Professor, Chemistry, Molecular Biosciences
  • Monica Olvera de la Cruz, Professor, Materials Science Engineering, Chemistry and (by courtesy) Chemical and Biological Engineering
  • Christian Petersen, Assistant Professor, Molecular Biosciences
  • Heather Pinkett, Associate Professor, Molecular Biosciences
  • Arthur Prindle, Assistant Professor, Biochemistry & Molecular Genetics
  • Amy Rosenzweig, Professor, Molecular Biosciences, Chemistry
  • Evan Scott, Assistant Professor, Biomedical Engineering
  • Ramille Shah, Assistant Professor, Materials Science and Engineering and Department of Surgery, Feinberg School of Medicine
  • Kenneth Shull, Professor, Materials Science and Engineering
  • Richard Silverman, Professor, Chemistry
  • Sara Solla, Professor, Physiology
  • Fraser Stoddart, Professor, Chemisry
  • Samuel Stupp, Board of Trustees Professor, Professor of Materials Science, Chemistry, Medicine, Biomedical Engineering
  • Igal Szleifer, Christina Enroth-Cugell Professor of Biomedical Engineering, Biomedical Engineering and (by courtesy) Chemical and Biological Engineering
  • Shad Thaxton, Associate Professor, Urology
  • John Troy, Professor, Biomedical Engineering
  • William Tse, Adjunct Associate Professor, Pediatrics
  • Danielle Tullman-Ercek, Associate Professor, Chemical and Biological Engineering
  • Keith Tyo, Associate Professor, Chemical and Biological Engineering
  • Brian Uzzi Professor, Leadership and Organizational Change
  • Eric Weiss, Associate Professor, Molecular Biosciences
  • Sadie Wignall, Assistant Professor, Molecular Biosciences
  • Uri Wilensky, Professor, Electrical Engineering and Computer Science
  • Gayle Woloschak, Professor, Radiation Oncology
  • Teresa Woodruff, Professor, Obstetrics & Gynecology, Associate Provost for Graduate Education, Dean of The Graduate School
  • Hao F. Zhang, Associate Professor, Biomedical Engineering